# -*- coding: utf-8 -*- """Copie de Disco Diffusion v5.1 [w/ Turbo] Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/11dX8Ve_UQ45_sg-Y02sT3M7nbVOrBllB # Disco Diffusion v5.1 - Now with Turbo In case of confusion, Disco is the name of this notebook edit. The diffusion model in use is Katherine Crowson's fine-tuned 512x512 model For issues, join the [Disco Diffusion Discord](https://discord.gg/msEZBy4HxA) or message us on twitter at [@somnai_dreams](https://twitter.com/somnai_dreams) or [@gandamu](https://twitter.com/gandamu_ml) ### Credits & Changelog ⬇️ #### Credits Original notebook by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses either OpenAI's 256x256 unconditional ImageNet or Katherine Crowson's fine-tuned 512x512 diffusion model (https://github.com/openai/guided-diffusion), together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. Modified by Daniel Russell (https://github.com/russelldc, https://twitter.com/danielrussruss) to include (hopefully) optimal params for quick generations in 15-100 timesteps rather than 1000, as well as more robust augmentations. Further improvements from Dango233 and nsheppard helped improve the quality of diffusion in general, and especially so for shorter runs like this notebook aims to achieve. Vark added code to load in multiple Clip models at once, which all prompts are evaluated against, which may greatly improve accuracy. The latest zoom, pan, rotation, and keyframes features were taken from Chigozie Nri's VQGAN Zoom Notebook (https://github.com/chigozienri, https://twitter.com/chigozienri) Advanced DangoCutn Cutout method is also from Dango223. -- Disco: Somnai (https://twitter.com/Somnai_dreams) added Diffusion Animation techniques, QoL improvements and various implementations of tech and techniques, mostly listed in the changelog below. 3D animation implementation added by Adam Letts (https://twitter.com/gandamu_ml) in collaboration with Somnai. Turbo feature by Chris Allen (https://twitter.com/zippy731) #### License Licensed under the MIT License Copyright (c) 2021 Katherine Crowson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- MIT License Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -- Licensed under the MIT License Copyright (c) 2021 Maxwell Ingham Copyright (c) 2022 Adam Letts Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #### Changelog """ #@title <- View Changelog skip_for_run_all = True #@param {type: 'boolean'} if skip_for_run_all == False: print( ''' v1 Update: Oct 29th 2021 - Somnai QoL improvements added by Somnai (@somnai_dreams), including user friendly UI, settings+prompt saving and improved google drive folder organization. v1.1 Update: Nov 13th 2021 - Somnai Now includes sizing options, intermediate saves and fixed image prompts and perlin inits. unexposed batch option since it doesn't work v2 Update: Nov 22nd 2021 - Somnai Initial addition of Katherine Crowson's Secondary Model Method (https://colab.research.google.com/drive/1mpkrhOjoyzPeSWy2r7T8EYRaU7amYOOi#scrollTo=X5gODNAMEUCR) Noticed settings were saving with the wrong name so corrected it. Let me know if you preferred the old scheme. v3 Update: Dec 24th 2021 - Somnai Implemented Dango's advanced cutout method Added SLIP models, thanks to NeuralDivergent Fixed issue with NaNs resulting in black images, with massive help and testing from @Softology Perlin now changes properly within batches (not sure where this perlin_regen code came from originally, but thank you) v4 Update: Jan 2021 - Somnai Implemented Diffusion Zooming Added Chigozie keyframing Made a bunch of edits to processes v4.1 Update: Jan 14th 2021 - Somnai Added video input mode Added license that somehow went missing Added improved prompt keyframing, fixed image_prompts and multiple prompts Improved UI Significant under the hood cleanup and improvement Refined defaults for each mode Added latent-diffusion SuperRes for sharpening Added resume run mode v4.9 Update: Feb 5th 2022 - gandamu / Adam Letts Added 3D Added brightness corrections to prevent animation from steadily going dark over time v4.91 Update: Feb 19th 2022 - gandamu / Adam Letts Cleaned up 3D implementation and made associated args accessible via Colab UI elements v4.92 Update: Feb 20th 2022 - gandamu / Adam Letts Separated transform code v5.01 Update: Mar 10th 2022 - gandamu / Adam Letts IPython magic commands replaced by Python code v5.1 Update: Mar 30th 2022 - zippy / Chris Allen and gandamu / Adam Letts Integrated Turbo+Smooth features from Disco Diffusion Turbo -- just the implementation, without its defaults. Implemented resume of turbo animations in such a way that it's now possible to resume from different batch folders and batch numbers. 3D rotation parameter units are now degrees (rather than radians) Corrected name collision in sampling_mode (now diffusion_sampling_mode for plms/ddim, and sampling_mode for 3D transform sampling) Added video_init_seed_continuity option to make init video animations more continuous ''' ) """# Tutorial **Diffusion settings (Defaults are heavily outdated)** --- This section is outdated as of v2 Setting | Description | Default --- | --- | --- **Your vision:** `text_prompts` | A description of what you'd like the machine to generate. Think of it like writing the caption below your image on a website. | N/A `image_prompts` | Think of these images more as a description of their contents. | N/A **Image quality:** `clip_guidance_scale` | Controls how much the image should look like the prompt. | 1000 `tv_scale` | Controls the smoothness of the final output. | 150 `range_scale` | Controls how far out of range RGB values are allowed to be. | 150 `sat_scale` | Controls how much saturation is allowed. From nshepperd's JAX notebook. | 0 `cutn` | Controls how many crops to take from the image. | 16 `cutn_batches` | Accumulate CLIP gradient from multiple batches of cuts | 2 **Init settings:** `init_image` | URL or local path | None `init_scale` | This enhances the effect of the init image, a good value is 1000 | 0 `skip_steps Controls the starting point along the diffusion timesteps | 0 `perlin_init` | Option to start with random perlin noise | False `perlin_mode` | ('gray', 'color') | 'mixed' **Advanced:** `skip_augs` |Controls whether to skip torchvision augmentations | False `randomize_class` |Controls whether the imagenet class is randomly changed each iteration | True `clip_denoised` |Determines whether CLIP discriminates a noisy or denoised image | False `clamp_grad` |Experimental: Using adaptive clip grad in the cond_fn | True `seed` | Choose a random seed and print it at end of run for reproduction | random_seed `fuzzy_prompt` | Controls whether to add multiple noisy prompts to the prompt losses | False `rand_mag` |Controls the magnitude of the random noise | 0.1 `eta` | DDIM hyperparameter | 0.5 .. **Model settings** --- Setting | Description | Default --- | --- | --- **Diffusion:** `timestep_respacing` | Modify this value to decrease the number of timesteps. | ddim100 `diffusion_steps` || 1000 **Diffusion:** `clip_models` | Models of CLIP to load. Typically the more, the better but they all come at a hefty VRAM cost. | ViT-B/32, ViT-B/16, RN50x4 # 1. Set Up """ #@title 1.1 Check GPU Status import subprocess simple_nvidia_smi_display = False#@param {type:"boolean"} if simple_nvidia_smi_display: #!nvidia-smi nvidiasmi_output = subprocess.run(['nvidia-smi', '-L'], stdout=subprocess.PIPE).stdout.decode('utf-8') print(nvidiasmi_output) else: #!nvidia-smi -i 0 -e 0 nvidiasmi_output = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE).stdout.decode('utf-8') print(nvidiasmi_output) nvidiasmi_ecc_note = subprocess.run(['nvidia-smi', '-i', '0', '-e', '0'], stdout=subprocess.PIPE).stdout.decode('utf-8') print(nvidiasmi_ecc_note) #@title 1.2 Prepare Folders import subprocess import sys import ipykernel def gitclone(url): res = subprocess.run(['git', 'clone', url], stdout=subprocess.PIPE).stdout.decode('utf-8') print(res) def pipi(modulestr): res = subprocess.run(['pip', 'install', modulestr], stdout=subprocess.PIPE).stdout.decode('utf-8') print(res) def pipie(modulestr): res = subprocess.run(['git', 'install', '-e', modulestr], stdout=subprocess.PIPE).stdout.decode('utf-8') print(res) def wget(url, outputdir): res = subprocess.run(['wget', url, '-P', f'{outputdir}'], stdout=subprocess.PIPE).stdout.decode('utf-8') print(res) try: from google.colab import drive print("Google Colab detected. Using Google Drive.") is_colab = True #@markdown If you connect your Google Drive, you can save the final image of each run on your drive. google_drive = True #@param {type:"boolean"} #@markdown Click here if you'd like to save the diffusion model checkpoint file to (and/or load from) your Google Drive: save_models_to_google_drive = True #@param {type:"boolean"} except: is_colab = False google_drive = False save_models_to_google_drive = False print("Google Colab not detected.") if is_colab: if google_drive is True: drive.mount('/content/drive') root_path = '/content/drive/MyDrive/AI/Disco_Diffusion' else: root_path = '/content' else: root_path = '.' import os def createPath(filepath): os.makedirs(filepath, exist_ok=True) initDirPath = f'{root_path}/init_images' createPath(initDirPath) outDirPath = f'{root_path}/images_out' createPath(outDirPath) if is_colab: if google_drive and not save_models_to_google_drive or not google_drive: model_path = '/content/model' createPath(model_path) if google_drive and save_models_to_google_drive: model_path = f'{root_path}/model' createPath(model_path) else: model_path = f'{root_path}/model' createPath(model_path) # libraries = f'{root_path}/libraries' # createPath(libraries) #@title ### 1.3 Install and import dependencies import pathlib, shutil if not is_colab: # If running locally, there's a good chance your env will need this in order to not crash upon np.matmul() or similar operations. os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' PROJECT_DIR = os.path.abspath(os.getcwd()) USE_ADABINS = True if is_colab: if google_drive is not True: root_path = f'/content' model_path = '/content/models' else: root_path = f'.' model_path = f'{root_path}/model' model_256_downloaded = False model_512_downloaded = False model_secondary_downloaded = False if is_colab: gitclone("https://github.com/openai/CLIP") #gitclone("https://github.com/facebookresearch/SLIP.git") gitclone("https://github.com/crowsonkb/guided-diffusion") gitclone("https://github.com/assafshocher/ResizeRight.git") gitclone("https://github.com/MSFTserver/pytorch3d-lite.git") pipie("./CLIP") pipie("./guided-diffusion") multipip_res = subprocess.run(['pip', 'install', 'lpips', 'datetime', 'timm', 'ftfy'], stdout=subprocess.PIPE).stdout.decode('utf-8') print(multipip_res) subprocess.run(['apt', 'install', 'imagemagick'], stdout=subprocess.PIPE).stdout.decode('utf-8') gitclone("https://github.com/isl-org/MiDaS.git") gitclone("https://github.com/alembics/disco-diffusion.git") pipi("pytorch-lightning") pipi("omegaconf") pipi("einops") # Rename a file to avoid a name conflict.. try: os.rename("MiDaS/utils.py", "MiDaS/midas_utils.py") shutil.copyfile("disco-diffusion/disco_xform_utils.py", "disco_xform_utils.py") except: pass if not os.path.exists(f'{model_path}'): pathlib.Path(model_path).mkdir(parents=True, exist_ok=True) if not os.path.exists(f'{model_path}/dpt_large-midas-2f21e586.pt'): wget("https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", model_path) import sys import torch # sys.path.append('./SLIP') sys.path.append('./pytorch3d-lite') sys.path.append('./ResizeRight') sys.path.append('./MiDaS') from dataclasses import dataclass from functools import partial import cv2 import pandas as pd import gc import io import math import timm from IPython import display import lpips from PIL import Image, ImageOps import requests from glob import glob import json from types import SimpleNamespace from torch import nn from torch.nn import functional as F import torchvision.transforms as T import torchvision.transforms.functional as TF from tqdm.notebook import tqdm sys.path.append('./CLIP') sys.path.append('./guided-diffusion') import clip from resize_right import resize # from models import SLIP_VITB16, SLIP, SLIP_VITL16 from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults from datetime import datetime import numpy as np import matplotlib.pyplot as plt import random from ipywidgets import Output import hashlib #SuperRes if is_colab: gitclone("https://github.com/CompVis/latent-diffusion.git") gitclone("https://github.com/CompVis/taming-transformers") pipie("./taming-transformers") pipi("ipywidgets omegaconf>=2.0.0 pytorch-lightning>=1.0.8 torch-fidelity einops wandb") #SuperRes import ipywidgets as widgets import os sys.path.append(".") sys.path.append('./taming-transformers') from taming.models import vqgan # checking correct import from taming from torchvision.datasets.utils import download_url if is_colab: os.chdir('/content/latent-diffusion') else: #os.chdir('latent-diffusion') sys.path.append('latent-diffusion') from functools import partial from ldm.util import instantiate_from_config from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like # from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import ismap if is_colab: os.chdir('/content') from google.colab import files else: os.chdir(f'{PROJECT_DIR}') from IPython.display import Image as ipyimg from numpy import asarray from einops import rearrange, repeat import torch, torchvision import time from omegaconf import OmegaConf import warnings warnings.filterwarnings("ignore", category=UserWarning) # AdaBins stuff if USE_ADABINS: if is_colab: gitclone("https://github.com/shariqfarooq123/AdaBins.git") if not os.path.exists(f'{model_path}/AdaBins_nyu.pt'): wget("https://cloudflare-ipfs.com/ipfs/Qmd2mMnDLWePKmgfS8m6ntAg4nhV5VkUyAydYBp8cWWeB7/AdaBins_nyu.pt", model_path) pathlib.Path("pretrained").mkdir(parents=True, exist_ok=True) shutil.copyfile(f"{model_path}/AdaBins_nyu.pt", "pretrained/AdaBins_nyu.pt") sys.path.append('./AdaBins') from infer import InferenceHelper MAX_ADABINS_AREA = 500000 import torch DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('Using device:', DEVICE) device = DEVICE # At least one of the modules expects this name.. if torch.cuda.get_device_capability(DEVICE) == (8,0): ## A100 fix thanks to Emad print('Disabling CUDNN for A100 gpu', file=sys.stderr) torch.backends.cudnn.enabled = False #@title ### 1.4 Define Midas functions from midas.dpt_depth import DPTDepthModel from midas.midas_net import MidasNet from midas.midas_net_custom import MidasNet_small from midas.transforms import Resize, NormalizeImage, PrepareForNet # Initialize MiDaS depth model. # It remains resident in VRAM and likely takes around 2GB VRAM. # You could instead initialize it for each frame (and free it after each frame) to save VRAM.. but initializing it is slow. default_models = { "midas_v21_small": f"{model_path}/midas_v21_small-70d6b9c8.pt", "midas_v21": f"{model_path}/midas_v21-f6b98070.pt", "dpt_large": f"{model_path}/dpt_large-midas-2f21e586.pt", "dpt_hybrid": f"{model_path}/dpt_hybrid-midas-501f0c75.pt", "dpt_hybrid_nyu": f"{model_path}/dpt_hybrid_nyu-2ce69ec7.pt",} def init_midas_depth_model(midas_model_type="dpt_large", optimize=True): midas_model = None net_w = None net_h = None resize_mode = None normalization = None print(f"Initializing MiDaS '{midas_model_type}' depth model...") # load network midas_model_path = default_models[midas_model_type] if midas_model_type == "dpt_large": # DPT-Large midas_model = DPTDepthModel( path=midas_model_path, backbone="vitl16_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode = "minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif midas_model_type == "dpt_hybrid": #DPT-Hybrid midas_model = DPTDepthModel( path=midas_model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode="minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif midas_model_type == "dpt_hybrid_nyu": #DPT-Hybrid-NYU midas_model = DPTDepthModel( path=midas_model_path, backbone="vitb_rn50_384", non_negative=True, ) net_w, net_h = 384, 384 resize_mode="minimal" normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) elif midas_model_type == "midas_v21": midas_model = MidasNet(midas_model_path, non_negative=True) net_w, net_h = 384, 384 resize_mode="upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) elif midas_model_type == "midas_v21_small": midas_model = MidasNet_small(midas_model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 resize_mode="upper_bound" normalization = NormalizeImage( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) else: print(f"midas_model_type '{midas_model_type}' not implemented") assert False midas_transform = T.Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method=resize_mode, image_interpolation_method=cv2.INTER_CUBIC, ), normalization, PrepareForNet(), ] ) midas_model.eval() if optimize==True: if DEVICE == torch.device("cuda"): midas_model = midas_model.to(memory_format=torch.channels_last) midas_model = midas_model.half() midas_model.to(DEVICE) print(f"MiDaS '{midas_model_type}' depth model initialized.") return midas_model, midas_transform, net_w, net_h, resize_mode, normalization #@title 1.5 Define necessary functions # https://gist.github.com/adefossez/0646dbe9ed4005480a2407c62aac8869 import py3d_tools as p3dT import disco_xform_utils as dxf def interp(t): return 3 * t**2 - 2 * t ** 3 def perlin(width, height, scale=10, device=None): gx, gy = torch.randn(2, width + 1, height + 1, 1, 1, device=device) xs = torch.linspace(0, 1, scale + 1)[:-1, None].to(device) ys = torch.linspace(0, 1, scale + 1)[None, :-1].to(device) wx = 1 - interp(xs) wy = 1 - interp(ys) dots = 0 dots += wx * wy * (gx[:-1, :-1] * xs + gy[:-1, :-1] * ys) dots += (1 - wx) * wy * (-gx[1:, :-1] * (1 - xs) + gy[1:, :-1] * ys) dots += wx * (1 - wy) * (gx[:-1, 1:] * xs - gy[:-1, 1:] * (1 - ys)) dots += (1 - wx) * (1 - wy) * (-gx[1:, 1:] * (1 - xs) - gy[1:, 1:] * (1 - ys)) return dots.permute(0, 2, 1, 3).contiguous().view(width * scale, height * scale) def perlin_ms(octaves, width, height, grayscale, device=device): out_array = [0.5] if grayscale else [0.5, 0.5, 0.5] # out_array = [0.0] if grayscale else [0.0, 0.0, 0.0] for i in range(1 if grayscale else 3): scale = 2 ** len(octaves) oct_width = width oct_height = height for oct in octaves: p = perlin(oct_width, oct_height, scale, device) out_array[i] += p * oct scale //= 2 oct_width *= 2 oct_height *= 2 return torch.cat(out_array) def create_perlin_noise(octaves=[1, 1, 1, 1], width=2, height=2, grayscale=True): out = perlin_ms(octaves, width, height, grayscale) if grayscale: out = TF.resize(size=(side_y, side_x), img=out.unsqueeze(0)) out = TF.to_pil_image(out.clamp(0, 1)).convert('RGB') else: out = out.reshape(-1, 3, out.shape[0]//3, out.shape[1]) out = TF.resize(size=(side_y, side_x), img=out) out = TF.to_pil_image(out.clamp(0, 1).squeeze()) out = ImageOps.autocontrast(out) return out def regen_perlin(): if perlin_mode == 'color': init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, False) elif perlin_mode == 'gray': init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, True) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True) else: init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True) init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device).unsqueeze(0).mul(2).sub(1) del init2 return init.expand(batch_size, -1, -1, -1) def fetch(url_or_path): if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'): r = requests.get(url_or_path) r.raise_for_status() fd = io.BytesIO() fd.write(r.content) fd.seek(0) return fd return open(url_or_path, 'rb') def read_image_workaround(path): """OpenCV reads images as BGR, Pillow saves them as RGB. Work around this incompatibility to avoid colour inversions.""" im_tmp = cv2.imread(path) return cv2.cvtColor(im_tmp, cv2.COLOR_BGR2RGB) def parse_prompt(prompt): if prompt.startswith('http://') or prompt.startswith('https://'): vals = prompt.rsplit(':', 2) vals = [vals[0] + ':' + vals[1], *vals[2:]] else: vals = prompt.rsplit(':', 1) vals = vals + ['', '1'][len(vals):] return vals[0], float(vals[1]) def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.reshape([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect') input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect') input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.reshape([n, c, h, w]) return F.interpolate(input, size, mode='bicubic', align_corners=align_corners) class MakeCutouts(nn.Module): def __init__(self, cut_size, cutn, skip_augs=False): super().__init__() self.cut_size = cut_size self.cutn = cutn self.skip_augs = skip_augs self.augs = T.Compose([ T.RandomHorizontalFlip(p=0.5), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomAffine(degrees=15, translate=(0.1, 0.1)), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomPerspective(distortion_scale=0.4, p=0.7), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomGrayscale(p=0.15), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), ]) def forward(self, input): input = T.Pad(input.shape[2]//4, fill=0)(input) sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) cutouts = [] for ch in range(self.cutn): if ch > self.cutn - self.cutn//4: cutout = input.clone() else: size = int(max_size * torch.zeros(1,).normal_(mean=.8, std=.3).clip(float(self.cut_size/max_size), 1.)) offsetx = torch.randint(0, abs(sideX - size + 1), ()) offsety = torch.randint(0, abs(sideY - size + 1), ()) cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] if not self.skip_augs: cutout = self.augs(cutout) cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) del cutout cutouts = torch.cat(cutouts, dim=0) return cutouts cutout_debug = False padargs = {} class MakeCutoutsDango(nn.Module): def __init__(self, cut_size, Overview=4, InnerCrop = 0, IC_Size_Pow=0.5, IC_Grey_P = 0.2 ): super().__init__() self.cut_size = cut_size self.Overview = Overview self.InnerCrop = InnerCrop self.IC_Size_Pow = IC_Size_Pow self.IC_Grey_P = IC_Grey_P if args.animation_mode == 'None': self.augs = T.Compose([ T.RandomHorizontalFlip(p=0.5), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation = T.InterpolationMode.BILINEAR), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomGrayscale(p=0.1), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), ]) elif args.animation_mode == 'Video Input': self.augs = T.Compose([ T.RandomHorizontalFlip(p=0.5), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomAffine(degrees=15, translate=(0.1, 0.1)), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomPerspective(distortion_scale=0.4, p=0.7), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomGrayscale(p=0.15), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), ]) elif args.animation_mode == '2D' or args.animation_mode == '3D': self.augs = T.Compose([ T.RandomHorizontalFlip(p=0.4), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation = T.InterpolationMode.BILINEAR), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomGrayscale(p=0.1), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.3), ]) def forward(self, input): cutouts = [] gray = T.Grayscale(3) sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) l_size = max(sideX, sideY) output_shape = [1,3,self.cut_size,self.cut_size] output_shape_2 = [1,3,self.cut_size+2,self.cut_size+2] pad_input = F.pad(input,((sideY-max_size)//2,(sideY-max_size)//2,(sideX-max_size)//2,(sideX-max_size)//2), **padargs) cutout = resize(pad_input, out_shape=output_shape) if self.Overview>0: if self.Overview<=4: if self.Overview>=1: cutouts.append(cutout) if self.Overview>=2: cutouts.append(gray(cutout)) if self.Overview>=3: cutouts.append(TF.hflip(cutout)) if self.Overview==4: cutouts.append(gray(TF.hflip(cutout))) else: cutout = resize(pad_input, out_shape=output_shape) for _ in range(self.Overview): cutouts.append(cutout) if cutout_debug: if is_colab: TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("/content/cutout_overview0.jpg",quality=99) else: TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("cutout_overview0.jpg",quality=99) if self.InnerCrop >0: for i in range(self.InnerCrop): size = int(torch.rand([])**self.IC_Size_Pow * (max_size - min_size) + min_size) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] if i <= int(self.IC_Grey_P * self.InnerCrop): cutout = gray(cutout) cutout = resize(cutout, out_shape=output_shape) cutouts.append(cutout) if cutout_debug: if is_colab: TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("/content/cutout_InnerCrop.jpg",quality=99) else: TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("cutout_InnerCrop.jpg",quality=99) cutouts = torch.cat(cutouts) if skip_augs is not True: cutouts=self.augs(cutouts) return cutouts def spherical_dist_loss(x, y): x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def tv_loss(input): """L2 total variation loss, as in Mahendran et al.""" input = F.pad(input, (0, 1, 0, 1), 'replicate') x_diff = input[..., :-1, 1:] - input[..., :-1, :-1] y_diff = input[..., 1:, :-1] - input[..., :-1, :-1] return (x_diff**2 + y_diff**2).mean([1, 2, 3]) def range_loss(input): return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3]) stop_on_next_loop = False # Make sure GPU memory doesn't get corrupted from cancelling the run mid-way through, allow a full frame to complete def do_3d_step(img_filepath, frame_num, midas_model, midas_transform): if args.key_frames: translation_x = args.translation_x_series[frame_num] translation_y = args.translation_y_series[frame_num] translation_z = args.translation_z_series[frame_num] rotation_3d_x = args.rotation_3d_x_series[frame_num] rotation_3d_y = args.rotation_3d_y_series[frame_num] rotation_3d_z = args.rotation_3d_z_series[frame_num] print( f'translation_x: {translation_x}', f'translation_y: {translation_y}', f'translation_z: {translation_z}', f'rotation_3d_x: {rotation_3d_x}', f'rotation_3d_y: {rotation_3d_y}', f'rotation_3d_z: {rotation_3d_z}', ) trans_scale = 1.0/200.0 translate_xyz = [-translation_x*trans_scale, translation_y*trans_scale, -translation_z*trans_scale] rotate_xyz_degrees = [rotation_3d_x, rotation_3d_y, rotation_3d_z] print('translation:',translate_xyz) print('rotation:',rotate_xyz_degrees) rotate_xyz = [math.radians(rotate_xyz_degrees[0]), math.radians(rotate_xyz_degrees[1]), math.radians(rotate_xyz_degrees[2])] rot_mat = p3dT.euler_angles_to_matrix(torch.tensor(rotate_xyz, device=device), "XYZ").unsqueeze(0) print("rot_mat: " + str(rot_mat)) next_step_pil = dxf.transform_image_3d(img_filepath, midas_model, midas_transform, DEVICE, rot_mat, translate_xyz, args.near_plane, args.far_plane, args.fov, padding_mode=args.padding_mode, sampling_mode=args.sampling_mode, midas_weight=args.midas_weight) return next_step_pil def do_run(): seed = args.seed print(range(args.start_frame, args.max_frames)) if (args.animation_mode == "3D") and (args.midas_weight > 0.0): midas_model, midas_transform, midas_net_w, midas_net_h, midas_resize_mode, midas_normalization = init_midas_depth_model(args.midas_depth_model) for frame_num in range(args.start_frame, args.max_frames): if stop_on_next_loop: break display.clear_output(wait=True) # Print Frame progress if animation mode is on if args.animation_mode != "None": batchBar = tqdm(range(args.max_frames), desc ="Frames") batchBar.n = frame_num batchBar.refresh() # Inits if not video frames if args.animation_mode != "Video Input": if args.init_image == '': init_image = None else: init_image = args.init_image init_scale = args.init_scale skip_steps = args.skip_steps if args.animation_mode == "2D": if args.key_frames: angle = args.angle_series[frame_num] zoom = args.zoom_series[frame_num] translation_x = args.translation_x_series[frame_num] translation_y = args.translation_y_series[frame_num] print( f'angle: {angle}', f'zoom: {zoom}', f'translation_x: {translation_x}', f'translation_y: {translation_y}', ) if frame_num > 0: seed += 1 if resume_run and frame_num == start_frame: img_0 = cv2.imread(batchFolder+f"/{batch_name}({batchNum})_{start_frame-1:04}.png") else: img_0 = cv2.imread('prevFrame.png') center = (1*img_0.shape[1]//2, 1*img_0.shape[0]//2) trans_mat = np.float32( [[1, 0, translation_x], [0, 1, translation_y]] ) rot_mat = cv2.getRotationMatrix2D( center, angle, zoom ) trans_mat = np.vstack([trans_mat, [0,0,1]]) rot_mat = np.vstack([rot_mat, [0,0,1]]) transformation_matrix = np.matmul(rot_mat, trans_mat) img_0 = cv2.warpPerspective( img_0, transformation_matrix, (img_0.shape[1], img_0.shape[0]), borderMode=cv2.BORDER_WRAP ) cv2.imwrite('prevFrameScaled.png', img_0) init_image = 'prevFrameScaled.png' init_scale = args.frames_scale skip_steps = args.calc_frames_skip_steps if args.animation_mode == "3D": if frame_num == 0: pass else: seed += 1 if resume_run and frame_num == start_frame: img_filepath = batchFolder+f"/{batch_name}({batchNum})_{start_frame-1:04}.png" if turbo_mode and frame_num > turbo_preroll: shutil.copyfile(img_filepath, 'oldFrameScaled.png') else: img_filepath = '/content/prevFrame.png' if is_colab else 'prevFrame.png' next_step_pil = do_3d_step(img_filepath, frame_num, midas_model, midas_transform) next_step_pil.save('prevFrameScaled.png') ### Turbo mode - skip some diffusions, use 3d morph for clarity and to save time if turbo_mode: if frame_num == turbo_preroll: #start tracking oldframe next_step_pil.save('oldFrameScaled.png')#stash for later blending elif frame_num > turbo_preroll: #set up 2 warped image sequences, old & new, to blend toward new diff image old_frame = do_3d_step('oldFrameScaled.png', frame_num, midas_model, midas_transform) old_frame.save('oldFrameScaled.png') if frame_num % int(turbo_steps) != 0: print('turbo skip this frame: skipping clip diffusion steps') filename = f'{args.batch_name}({args.batchNum})_{frame_num:04}.png' blend_factor = ((frame_num % int(turbo_steps))+1)/int(turbo_steps) print('turbo skip this frame: skipping clip diffusion steps and saving blended frame') newWarpedImg = cv2.imread('prevFrameScaled.png')#this is already updated.. oldWarpedImg = cv2.imread('oldFrameScaled.png') blendedImage = cv2.addWeighted(newWarpedImg, blend_factor, oldWarpedImg,1-blend_factor, 0.0) cv2.imwrite(f'{batchFolder}/{filename}',blendedImage) next_step_pil.save(f'{img_filepath}') # save it also as prev_frame to feed next iteration continue else: #if not a skip frame, will run diffusion and need to blend. oldWarpedImg = cv2.imread('prevFrameScaled.png') cv2.imwrite(f'oldFrameScaled.png',oldWarpedImg)#swap in for blending later print('clip/diff this frame - generate clip diff image') init_image = 'prevFrameScaled.png' init_scale = args.frames_scale skip_steps = args.calc_frames_skip_steps if args.animation_mode == "Video Input": if not video_init_seed_continuity: seed += 1 init_image = f'{videoFramesFolder}/{frame_num+1:04}.jpg' init_scale = args.frames_scale skip_steps = args.calc_frames_skip_steps loss_values = [] if seed is not None: np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True target_embeds, weights = [], [] if args.prompts_series is not None and frame_num >= len(args.prompts_series): frame_prompt = args.prompts_series[-1] elif args.prompts_series is not None: frame_prompt = args.prompts_series[frame_num] else: frame_prompt = [] print(args.image_prompts_series) if args.image_prompts_series is not None and frame_num >= len(args.image_prompts_series): image_prompt = args.image_prompts_series[-1] elif args.image_prompts_series is not None: image_prompt = args.image_prompts_series[frame_num] else: image_prompt = [] print(f'Frame {frame_num} Prompt: {frame_prompt}') model_stats = [] for clip_model in clip_models: cutn = 16 model_stat = {"clip_model":None,"target_embeds":[],"make_cutouts":None,"weights":[]} model_stat["clip_model"] = clip_model for prompt in frame_prompt: txt, weight = parse_prompt(prompt) txt = clip_model.encode_text(clip.tokenize(prompt).to(device)).float() if args.fuzzy_prompt: for i in range(25): model_stat["target_embeds"].append((txt + torch.randn(txt.shape).cuda() * args.rand_mag).clamp(0,1)) model_stat["weights"].append(weight) else: model_stat["target_embeds"].append(txt) model_stat["weights"].append(weight) if image_prompt: model_stat["make_cutouts"] = MakeCutouts(clip_model.visual.input_resolution, cutn, skip_augs=skip_augs) for prompt in image_prompt: path, weight = parse_prompt(prompt) img = Image.open(fetch(path)).convert('RGB') img = TF.resize(img, min(side_x, side_y, *img.size), T.InterpolationMode.LANCZOS) batch = model_stat["make_cutouts"](TF.to_tensor(img).to(device).unsqueeze(0).mul(2).sub(1)) embed = clip_model.encode_image(normalize(batch)).float() if fuzzy_prompt: for i in range(25): model_stat["target_embeds"].append((embed + torch.randn(embed.shape).cuda() * rand_mag).clamp(0,1)) weights.extend([weight / cutn] * cutn) else: model_stat["target_embeds"].append(embed) model_stat["weights"].extend([weight / cutn] * cutn) model_stat["target_embeds"] = torch.cat(model_stat["target_embeds"]) model_stat["weights"] = torch.tensor(model_stat["weights"], device=device) if model_stat["weights"].sum().abs() < 1e-3: raise RuntimeError('The weights must not sum to 0.') model_stat["weights"] /= model_stat["weights"].sum().abs() model_stats.append(model_stat) init = None if init_image is not None: init = Image.open(fetch(init_image)).convert('RGB') init = init.resize((args.side_x, args.side_y), Image.LANCZOS) init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1) if args.perlin_init: if args.perlin_mode == 'color': init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, False) elif args.perlin_mode == 'gray': init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, True) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True) else: init = create_perlin_noise([1.5**-i*0.5 for i in range(12)], 1, 1, False) init2 = create_perlin_noise([1.5**-i*0.5 for i in range(8)], 4, 4, True) # init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device) init = TF.to_tensor(init).add(TF.to_tensor(init2)).div(2).to(device).unsqueeze(0).mul(2).sub(1) del init2 cur_t = None def cond_fn(x, t, y=None): with torch.enable_grad(): x_is_NaN = False x = x.detach().requires_grad_() n = x.shape[0] if use_secondary_model is True: alpha = torch.tensor(diffusion.sqrt_alphas_cumprod[cur_t], device=device, dtype=torch.float32) sigma = torch.tensor(diffusion.sqrt_one_minus_alphas_cumprod[cur_t], device=device, dtype=torch.float32) cosine_t = alpha_sigma_to_t(alpha, sigma) out = secondary_model(x, cosine_t[None].repeat([n])).pred fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t] x_in = out * fac + x * (1 - fac) x_in_grad = torch.zeros_like(x_in) else: my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y}) fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t] x_in = out['pred_xstart'] * fac + x * (1 - fac) x_in_grad = torch.zeros_like(x_in) for model_stat in model_stats: for i in range(args.cutn_batches): t_int = int(t.item())+1 #errors on last step without +1, need to find source #when using SLIP Base model the dimensions need to be hard coded to avoid AttributeError: 'VisionTransformer' object has no attribute 'input_resolution' try: input_resolution=model_stat["clip_model"].visual.input_resolution except: input_resolution=224 cuts = MakeCutoutsDango(input_resolution, Overview= args.cut_overview[1000-t_int], InnerCrop = args.cut_innercut[1000-t_int], IC_Size_Pow=args.cut_ic_pow, IC_Grey_P = args.cut_icgray_p[1000-t_int] ) clip_in = normalize(cuts(x_in.add(1).div(2))) image_embeds = model_stat["clip_model"].encode_image(clip_in).float() dists = spherical_dist_loss(image_embeds.unsqueeze(1), model_stat["target_embeds"].unsqueeze(0)) dists = dists.view([args.cut_overview[1000-t_int]+args.cut_innercut[1000-t_int], n, -1]) losses = dists.mul(model_stat["weights"]).sum(2).mean(0) loss_values.append(losses.sum().item()) # log loss, probably shouldn't do per cutn_batch x_in_grad += torch.autograd.grad(losses.sum() * clip_guidance_scale, x_in)[0] / cutn_batches tv_losses = tv_loss(x_in) if use_secondary_model is True: range_losses = range_loss(out) else: range_losses = range_loss(out['pred_xstart']) sat_losses = torch.abs(x_in - x_in.clamp(min=-1,max=1)).mean() loss = tv_losses.sum() * tv_scale + range_losses.sum() * range_scale + sat_losses.sum() * sat_scale if init is not None and args.init_scale: init_losses = lpips_model(x_in, init) loss = loss + init_losses.sum() * args.init_scale x_in_grad += torch.autograd.grad(loss, x_in)[0] if torch.isnan(x_in_grad).any()==False: grad = -torch.autograd.grad(x_in, x, x_in_grad)[0] else: # print("NaN'd") x_is_NaN = True grad = torch.zeros_like(x) if args.clamp_grad and x_is_NaN == False: magnitude = grad.square().mean().sqrt() return grad * magnitude.clamp(max=args.clamp_max) / magnitude #min=-0.02, min=-clamp_max, return grad if args.diffusion_sampling_mode == 'ddim': sample_fn = diffusion.ddim_sample_loop_progressive else: sample_fn = diffusion.plms_sample_loop_progressive image_display = Output() for i in range(args.n_batches): if args.animation_mode == 'None': display.clear_output(wait=True) batchBar = tqdm(range(args.n_batches), desc ="Batches") batchBar.n = i batchBar.refresh() print('') display.display(image_display) gc.collect() torch.cuda.empty_cache() cur_t = diffusion.num_timesteps - skip_steps - 1 total_steps = cur_t if perlin_init: init = regen_perlin() if args.diffusion_sampling_mode == 'ddim': samples = sample_fn( model, (batch_size, 3, args.side_y, args.side_x), clip_denoised=clip_denoised, model_kwargs={}, cond_fn=cond_fn, progress=True, skip_timesteps=skip_steps, init_image=init, randomize_class=randomize_class, eta=eta, ) else: samples = sample_fn( model, (batch_size, 3, args.side_y, args.side_x), clip_denoised=clip_denoised, model_kwargs={}, cond_fn=cond_fn, progress=True, skip_timesteps=skip_steps, init_image=init, randomize_class=randomize_class, order=2, ) # with run_display: # display.clear_output(wait=True) imgToSharpen = None for j, sample in enumerate(samples): cur_t -= 1 intermediateStep = False if args.steps_per_checkpoint is not None: if j % steps_per_checkpoint == 0 and j > 0: intermediateStep = True elif j in args.intermediate_saves: intermediateStep = True with image_display: if j % args.display_rate == 0 or cur_t == -1 or intermediateStep == True: for k, image in enumerate(sample['pred_xstart']): # tqdm.write(f'Batch {i}, step {j}, output {k}:') current_time = datetime.now().strftime('%y%m%d-%H%M%S_%f') percent = math.ceil(j/total_steps*100) if args.n_batches > 0: #if intermediates are saved to the subfolder, don't append a step or percentage to the name if cur_t == -1 and args.intermediates_in_subfolder is True: save_num = f'{frame_num:04}' if animation_mode != "None" else i filename = f'{args.batch_name}({args.batchNum})_{save_num}.png' else: #If we're working with percentages, append it if args.steps_per_checkpoint is not None: filename = f'{args.batch_name}({args.batchNum})_{i:04}-{percent:02}%.png' # Or else, iIf we're working with specific steps, append those else: filename = f'{args.batch_name}({args.batchNum})_{i:04}-{j:03}.png' image = TF.to_pil_image(image.add(1).div(2).clamp(0, 1)) if j % args.display_rate == 0 or cur_t == -1: image.save('progress.png') display.clear_output(wait=True) display.display(display.Image('progress.png')) if args.steps_per_checkpoint is not None: if j % args.steps_per_checkpoint == 0 and j > 0: if args.intermediates_in_subfolder is True: image.save(f'{partialFolder}/{filename}') else: image.save(f'{batchFolder}/{filename}') else: if j in args.intermediate_saves: if args.intermediates_in_subfolder is True: image.save(f'{partialFolder}/{filename}') else: image.save(f'{batchFolder}/{filename}') if cur_t == -1: if frame_num == 0: save_settings() if args.animation_mode != "None": image.save('prevFrame.png') if args.sharpen_preset != "Off" and animation_mode == "None": imgToSharpen = image if args.keep_unsharp is True: image.save(f'{unsharpenFolder}/{filename}') else: image.save(f'{batchFolder}/{filename}') if args.animation_mode == "3D": # If turbo, save a blended image if turbo_mode: # Mix new image with prevFrameScaled blend_factor = (1)/int(turbo_steps) newFrame = cv2.imread('prevFrame.png') # This is already updated.. prev_frame_warped = cv2.imread('prevFrameScaled.png') blendedImage = cv2.addWeighted(newFrame, blend_factor, prev_frame_warped, (1-blend_factor), 0.0) cv2.imwrite(f'{batchFolder}/{filename}',blendedImage) else: image.save(f'{batchFolder}/{filename}') # if frame_num != args.max_frames-1: # display.clear_output() with image_display: if args.sharpen_preset != "Off" and animation_mode == "None": print('Starting Diffusion Sharpening...') do_superres(imgToSharpen, f'{batchFolder}/{filename}') display.clear_output() plt.plot(np.array(loss_values), 'r') def save_settings(): setting_list = { 'text_prompts': text_prompts, 'image_prompts': image_prompts, 'clip_guidance_scale': clip_guidance_scale, 'tv_scale': tv_scale, 'range_scale': range_scale, 'sat_scale': sat_scale, # 'cutn': cutn, 'cutn_batches': cutn_batches, 'max_frames': max_frames, 'interp_spline': interp_spline, # 'rotation_per_frame': rotation_per_frame, 'init_image': init_image, 'init_scale': init_scale, 'skip_steps': skip_steps, # 'zoom_per_frame': zoom_per_frame, 'frames_scale': frames_scale, 'frames_skip_steps': frames_skip_steps, 'perlin_init': perlin_init, 'perlin_mode': perlin_mode, 'skip_augs': skip_augs, 'randomize_class': randomize_class, 'clip_denoised': clip_denoised, 'clamp_grad': clamp_grad, 'clamp_max': clamp_max, 'seed': seed, 'fuzzy_prompt': fuzzy_prompt, 'rand_mag': rand_mag, 'eta': eta, 'width': width_height[0], 'height': width_height[1], 'diffusion_model': diffusion_model, 'use_secondary_model': use_secondary_model, 'steps': steps, 'diffusion_steps': diffusion_steps, 'diffusion_sampling_mode': diffusion_sampling_mode, 'ViTB32': ViTB32, 'ViTB16': ViTB16, 'ViTL14': ViTL14, 'RN101': RN101, 'RN50': RN50, 'RN50x4': RN50x4, 'RN50x16': RN50x16, 'RN50x64': RN50x64, 'cut_overview': str(cut_overview), 'cut_innercut': str(cut_innercut), 'cut_ic_pow': cut_ic_pow, 'cut_icgray_p': str(cut_icgray_p), 'key_frames': key_frames, 'max_frames': max_frames, 'angle': angle, 'zoom': zoom, 'translation_x': translation_x, 'translation_y': translation_y, 'translation_z': translation_z, 'rotation_3d_x': rotation_3d_x, 'rotation_3d_y': rotation_3d_y, 'rotation_3d_z': rotation_3d_z, 'midas_depth_model': midas_depth_model, 'midas_weight': midas_weight, 'near_plane': near_plane, 'far_plane': far_plane, 'fov': fov, 'padding_mode': padding_mode, 'sampling_mode': sampling_mode, 'video_init_path':video_init_path, 'extract_nth_frame':extract_nth_frame, 'video_init_seed_continuity': video_init_seed_continuity, 'turbo_mode':turbo_mode, 'turbo_steps':turbo_steps, 'turbo_preroll':turbo_preroll, } # print('Settings:', setting_list) with open(f"{batchFolder}/{batch_name}({batchNum})_settings.txt", "w+") as f: #save settings json.dump(setting_list, f, ensure_ascii=False, indent=4) #@title 1.6 Define the secondary diffusion model def append_dims(x, n): return x[(Ellipsis, *(None,) * (n - x.ndim))] def expand_to_planes(x, shape): return append_dims(x, len(shape)).repeat([1, 1, *shape[2:]]) def alpha_sigma_to_t(alpha, sigma): return torch.atan2(sigma, alpha) * 2 / math.pi def t_to_alpha_sigma(t): return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2) @dataclass class DiffusionOutput: v: torch.Tensor pred: torch.Tensor eps: torch.Tensor class ConvBlock(nn.Sequential): def __init__(self, c_in, c_out): super().__init__( nn.Conv2d(c_in, c_out, 3, padding=1), nn.ReLU(inplace=True), ) class SkipBlock(nn.Module): def __init__(self, main, skip=None): super().__init__() self.main = nn.Sequential(*main) self.skip = skip if skip else nn.Identity() def forward(self, input): return torch.cat([self.main(input), self.skip(input)], dim=1) class FourierFeatures(nn.Module): def __init__(self, in_features, out_features, std=1.): super().__init__() assert out_features % 2 == 0 self.weight = nn.Parameter(torch.randn([out_features // 2, in_features]) * std) def forward(self, input): f = 2 * math.pi * input @ self.weight.T return torch.cat([f.cos(), f.sin()], dim=-1) class SecondaryDiffusionImageNet(nn.Module): def __init__(self): super().__init__() c = 64 # The base channel count self.timestep_embed = FourierFeatures(1, 16) self.net = nn.Sequential( ConvBlock(3 + 16, c), ConvBlock(c, c), SkipBlock([ nn.AvgPool2d(2), ConvBlock(c, c * 2), ConvBlock(c * 2, c * 2), SkipBlock([ nn.AvgPool2d(2), ConvBlock(c * 2, c * 4), ConvBlock(c * 4, c * 4), SkipBlock([ nn.AvgPool2d(2), ConvBlock(c * 4, c * 8), ConvBlock(c * 8, c * 4), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), ]), ConvBlock(c * 8, c * 4), ConvBlock(c * 4, c * 2), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), ]), ConvBlock(c * 4, c * 2), ConvBlock(c * 2, c), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), ]), ConvBlock(c * 2, c), nn.Conv2d(c, 3, 3, padding=1), ) def forward(self, input, t): timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape) v = self.net(torch.cat([input, timestep_embed], dim=1)) alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t)) pred = input * alphas - v * sigmas eps = input * sigmas + v * alphas return DiffusionOutput(v, pred, eps) class SecondaryDiffusionImageNet2(nn.Module): def __init__(self): super().__init__() c = 64 # The base channel count cs = [c, c * 2, c * 2, c * 4, c * 4, c * 8] self.timestep_embed = FourierFeatures(1, 16) self.down = nn.AvgPool2d(2) self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) self.net = nn.Sequential( ConvBlock(3 + 16, cs[0]), ConvBlock(cs[0], cs[0]), SkipBlock([ self.down, ConvBlock(cs[0], cs[1]), ConvBlock(cs[1], cs[1]), SkipBlock([ self.down, ConvBlock(cs[1], cs[2]), ConvBlock(cs[2], cs[2]), SkipBlock([ self.down, ConvBlock(cs[2], cs[3]), ConvBlock(cs[3], cs[3]), SkipBlock([ self.down, ConvBlock(cs[3], cs[4]), ConvBlock(cs[4], cs[4]), SkipBlock([ self.down, ConvBlock(cs[4], cs[5]), ConvBlock(cs[5], cs[5]), ConvBlock(cs[5], cs[5]), ConvBlock(cs[5], cs[4]), self.up, ]), ConvBlock(cs[4] * 2, cs[4]), ConvBlock(cs[4], cs[3]), self.up, ]), ConvBlock(cs[3] * 2, cs[3]), ConvBlock(cs[3], cs[2]), self.up, ]), ConvBlock(cs[2] * 2, cs[2]), ConvBlock(cs[2], cs[1]), self.up, ]), ConvBlock(cs[1] * 2, cs[1]), ConvBlock(cs[1], cs[0]), self.up, ]), ConvBlock(cs[0] * 2, cs[0]), nn.Conv2d(cs[0], 3, 3, padding=1), ) def forward(self, input, t): timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape) v = self.net(torch.cat([input, timestep_embed], dim=1)) alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t)) pred = input * alphas - v * sigmas eps = input * sigmas + v * alphas return DiffusionOutput(v, pred, eps) #@title 1.7 SuperRes Define class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) # print(f'Data shape for DDIM sampling is {size}, eta {eta}') samples, intermediates = self.ddim_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t ) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running DDIM Sharpening with {total_steps} timesteps") iterator = tqdm(time_range, desc='DDIM Sharpening', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): b, *_, device = *x.shape, x.device e_t = self.model.apply_model(x, t, c) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 def download_models(mode): if mode == "superresolution": # this is the small bsr light model url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1' url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1' path_conf = f'{model_path}/superres/project.yaml' path_ckpt = f'{model_path}/superres/last.ckpt' download_url(url_conf, path_conf) download_url(url_ckpt, path_ckpt) path_conf = path_conf + '/?dl=1' # fix it path_ckpt = path_ckpt + '/?dl=1' # fix it return path_conf, path_ckpt else: raise NotImplementedError def load_model_from_config(config, ckpt): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") global_step = pl_sd["global_step"] sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) model.cuda() model.eval() return {"model": model}, global_step def get_model(mode): path_conf, path_ckpt = download_models(mode) config = OmegaConf.load(path_conf) model, step = load_model_from_config(config, path_ckpt) return model def get_custom_cond(mode): dest = "data/example_conditioning" if mode == "superresolution": uploaded_img = files.upload() filename = next(iter(uploaded_img)) name, filetype = filename.split(".") # todo assumes just one dot in name ! os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}") elif mode == "text_conditional": w = widgets.Text(value='A cake with cream!', disabled=True) display.display(w) with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f: f.write(w.value) elif mode == "class_conditional": w = widgets.IntSlider(min=0, max=1000) display.display(w) with open(f"{dest}/{mode}/custom.txt", 'w') as f: f.write(w.value) else: raise NotImplementedError(f"cond not implemented for mode{mode}") def get_cond_options(mode): path = "data/example_conditioning" path = os.path.join(path, mode) onlyfiles = [f for f in sorted(os.listdir(path))] return path, onlyfiles def select_cond_path(mode): path = "data/example_conditioning" # todo path = os.path.join(path, mode) onlyfiles = [f for f in sorted(os.listdir(path))] selected = widgets.RadioButtons( options=onlyfiles, description='Select conditioning:', disabled=False ) display.display(selected) selected_path = os.path.join(path, selected.value) return selected_path def get_cond(mode, img): example = dict() if mode == "superresolution": up_f = 4 # visualize_cond_img(selected_path) c = img c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True) c_up = rearrange(c_up, '1 c h w -> 1 h w c') c = rearrange(c, '1 c h w -> 1 h w c') c = 2. * c - 1. c = c.to(torch.device("cuda")) example["LR_image"] = c example["image"] = c_up return example def visualize_cond_img(path): display.display(ipyimg(filename=path)) def sr_run(model, img, task, custom_steps, eta, resize_enabled=False, classifier_ckpt=None, global_step=None): # global stride example = get_cond(task, img) save_intermediate_vid = False n_runs = 1 masked = False guider = None ckwargs = None mode = 'ddim' ddim_use_x0_pred = False temperature = 1. eta = eta make_progrow = True custom_shape = None height, width = example["image"].shape[1:3] split_input = height >= 128 and width >= 128 if split_input: ks = 128 stride = 64 vqf = 4 # model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), "vqf": vqf, "patch_distributed_vq": True, "tie_braker": False, "clip_max_weight": 0.5, "clip_min_weight": 0.01, "clip_max_tie_weight": 0.5, "clip_min_tie_weight": 0.01} else: if hasattr(model, "split_input_params"): delattr(model, "split_input_params") invert_mask = False x_T = None for n in range(n_runs): if custom_shape is not None: x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0]) logs = make_convolutional_sample(example, model, mode=mode, custom_steps=custom_steps, eta=eta, swap_mode=False , masked=masked, invert_mask=invert_mask, quantize_x0=False, custom_schedule=None, decode_interval=10, resize_enabled=resize_enabled, custom_shape=custom_shape, temperature=temperature, noise_dropout=0., corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid, make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred ) return logs @torch.no_grad() def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, mask=None, x0=None, quantize_x0=False, img_callback=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, x_T=None, log_every_t=None ): ddim = DDIMSampler(model) bs = shape[0] # dont know where this comes from but wayne shape = shape[1:] # cut batch dim # print(f"Sampling with eta = {eta}; steps: {steps}") samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, mask=mask, x0=x0, temperature=temperature, verbose=False, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T) return samples, intermediates @torch.no_grad() def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False, invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000, resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False): log = dict() z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, force_c_encode=not (hasattr(model, 'split_input_params') and model.cond_stage_key == 'coordinates_bbox'), return_original_cond=True) log_every_t = 1 if save_intermediate_vid else None if custom_shape is not None: z = torch.randn(custom_shape) # print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") z0 = None log["input"] = x log["reconstruction"] = xrec if ismap(xc): log["original_conditioning"] = model.to_rgb(xc) if hasattr(model, 'cond_stage_key'): log[model.cond_stage_key] = model.to_rgb(xc) else: log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_model: log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_key =='class_label': log[model.cond_stage_key] = xc[model.cond_stage_key] with model.ema_scope("Plotting"): t0 = time.time() img_cb = None sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, eta=eta, quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0, temperature=temperature, noise_dropout=noise_dropout, score_corrector=corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t) t1 = time.time() if ddim_use_x0_pred: sample = intermediates['pred_x0'][-1] x_sample = model.decode_first_stage(sample) try: x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) except: pass log["sample"] = x_sample log["time"] = t1 - t0 return log sr_diffMode = 'superresolution' sr_model = get_model('superresolution') def do_superres(img, filepath): if args.sharpen_preset == 'Faster': sr_diffusion_steps = "25" sr_pre_downsample = '1/2' if args.sharpen_preset == 'Fast': sr_diffusion_steps = "100" sr_pre_downsample = '1/2' if args.sharpen_preset == 'Slow': sr_diffusion_steps = "25" sr_pre_downsample = 'None' if args.sharpen_preset == 'Very Slow': sr_diffusion_steps = "100" sr_pre_downsample = 'None' sr_post_downsample = 'Original Size' sr_diffusion_steps = int(sr_diffusion_steps) sr_eta = 1.0 sr_downsample_method = 'Lanczos' gc.collect() torch.cuda.empty_cache() im_og = img width_og, height_og = im_og.size #Downsample Pre if sr_pre_downsample == '1/2': downsample_rate = 2 elif sr_pre_downsample == '1/4': downsample_rate = 4 else: downsample_rate = 1 width_downsampled_pre = width_og//downsample_rate height_downsampled_pre = height_og//downsample_rate if downsample_rate != 1: # print(f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) # im_og.save('/content/temp.png') # filepath = '/content/temp.png' logs = sr_run(sr_model["model"], im_og, sr_diffMode, sr_diffusion_steps, sr_eta) sample = logs["sample"] sample = sample.detach().cpu() sample = torch.clamp(sample, -1., 1.) sample = (sample + 1.) / 2. * 255 sample = sample.numpy().astype(np.uint8) sample = np.transpose(sample, (0, 2, 3, 1)) a = Image.fromarray(sample[0]) #Downsample Post if sr_post_downsample == '1/2': downsample_rate = 2 elif sr_post_downsample == '1/4': downsample_rate = 4 else: downsample_rate = 1 width, height = a.size width_downsampled_post = width//downsample_rate height_downsampled_post = height//downsample_rate if sr_downsample_method == 'Lanczos': aliasing = Image.LANCZOS else: aliasing = Image.NEAREST if downsample_rate != 1: # print(f'Downsampling from [{width}, {height}] to [{width_downsampled_post}, {height_downsampled_post}]') a = a.resize((width_downsampled_post, height_downsampled_post), aliasing) elif sr_post_downsample == 'Original Size': # print(f'Downsampling from [{width}, {height}] to Original Size [{width_og}, {height_og}]') a = a.resize((width_og, height_og), aliasing) display.display(a) a.save(filepath) return print(f'Processing finished!') """# 2. Diffusion and CLIP model settings""" #@markdown ####**Models Settings:** diffusion_model = "512x512_diffusion_uncond_finetune_008100" #@param ["256x256_diffusion_uncond", "512x512_diffusion_uncond_finetune_008100"] use_secondary_model = True #@param {type: 'boolean'} diffusion_sampling_mode = 'ddim' #@param ['plms','ddim'] timestep_respacing = '250' #@param ['25','50','100','150','250','500','1000','ddim25','ddim50', 'ddim75', 'ddim100','ddim150','ddim250','ddim500','ddim1000'] diffusion_steps = 300 #@param {type: 'number'} use_checkpoint = True #@param {type: 'boolean'} ViTB32 = True #@param{type:"boolean"} ViTB16 = True #@param{type:"boolean"} ViTL14 = False #@param{type:"boolean"} RN101 = False #@param{type:"boolean"} RN50 = True #@param{type:"boolean"} RN50x4 = False #@param{type:"boolean"} RN50x16 = False #@param{type:"boolean"} RN50x64 = False #@param{type:"boolean"} SLIPB16 = False #@param{type:"boolean"} SLIPL16 = False #@param{type:"boolean"} #@markdown If you're having issues with model downloads, check this to compare SHA's: check_model_SHA = False #@param{type:"boolean"} model_256_SHA = '983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a' model_512_SHA = '9c111ab89e214862b76e1fa6a1b3f1d329b1a88281885943d2cdbe357ad57648' model_secondary_SHA = '983e3de6f95c88c81b2ca7ebb2c217933be1973b1ff058776b970f901584613a' model_256_link = 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt' model_512_link = 'https://v-diffusion.s3.us-west-2.amazonaws.com/512x512_diffusion_uncond_finetune_008100.pt' model_secondary_link = 'https://v-diffusion.s3.us-west-2.amazonaws.com/secondary_model_imagenet_2.pth' model_256_path = f'{model_path}/256x256_diffusion_uncond.pt' model_512_path = f'{model_path}/512x512_diffusion_uncond_finetune_008100.pt' model_secondary_path = f'{model_path}/secondary_model_imagenet_2.pth' # Download the diffusion model if diffusion_model == '256x256_diffusion_uncond': if os.path.exists(model_256_path) and check_model_SHA: print('Checking 256 Diffusion File') with open(model_256_path,"rb") as f: bytes = f.read() hash = hashlib.sha256(bytes).hexdigest(); if hash == model_256_SHA: print('256 Model SHA matches') model_256_downloaded = True else: print("256 Model SHA doesn't match, redownloading...") wget(model_256_link, model_path) model_256_downloaded = True elif os.path.exists(model_256_path) and not check_model_SHA or model_256_downloaded == True: print('256 Model already downloaded, check check_model_SHA if the file is corrupt') else: wget(model_256_link, model_path) model_256_downloaded = True elif diffusion_model == '512x512_diffusion_uncond_finetune_008100': if os.path.exists(model_512_path) and check_model_SHA: print('Checking 512 Diffusion File') with open(model_512_path,"rb") as f: bytes = f.read() hash = hashlib.sha256(bytes).hexdigest(); if hash == model_512_SHA: print('512 Model SHA matches') model_512_downloaded = True else: print("512 Model SHA doesn't match, redownloading...") wget(model_512_link, model_path) model_512_downloaded = True elif os.path.exists(model_512_path) and not check_model_SHA or model_512_downloaded == True: print('512 Model already downloaded, check check_model_SHA if the file is corrupt') else: wget(model_512_link, model_path) model_512_downloaded = True # Download the secondary diffusion model v2 if use_secondary_model == True: if os.path.exists(model_secondary_path) and check_model_SHA: print('Checking Secondary Diffusion File') with open(model_secondary_path,"rb") as f: bytes = f.read() hash = hashlib.sha256(bytes).hexdigest(); if hash == model_secondary_SHA: print('Secondary Model SHA matches') model_secondary_downloaded = True else: print("Secondary Model SHA doesn't match, redownloading...") wget(model_secondary_link, model_path) model_secondary_downloaded = True elif os.path.exists(model_secondary_path) and not check_model_SHA or model_secondary_downloaded == True: print('Secondary Model already downloaded, check check_model_SHA if the file is corrupt') else: wget(model_secondary_link, model_path) model_secondary_downloaded = True model_config = model_and_diffusion_defaults() if diffusion_model == '512x512_diffusion_uncond_finetune_008100': model_config.update({ 'attention_resolutions': '32, 16, 8', 'class_cond': False, 'diffusion_steps': diffusion_steps, 'rescale_timesteps': True, 'timestep_respacing': timestep_respacing, 'image_size': 512, 'learn_sigma': True, 'noise_schedule': 'linear', 'num_channels': 256, 'num_head_channels': 64, 'num_res_blocks': 2, 'resblock_updown': True, 'use_checkpoint': use_checkpoint, 'use_fp16': True, 'use_scale_shift_norm': True, }) elif diffusion_model == '256x256_diffusion_uncond': model_config.update({ 'attention_resolutions': '32, 16, 8', 'class_cond': False, 'diffusion_steps': diffusion_steps, 'rescale_timesteps': True, 'timestep_respacing': timestep_respacing, 'image_size': 256, 'learn_sigma': True, 'noise_schedule': 'linear', 'num_channels': 256, 'num_head_channels': 64, 'num_res_blocks': 2, 'resblock_updown': True, 'use_checkpoint': use_checkpoint, 'use_fp16': True, 'use_scale_shift_norm': True, }) secondary_model_ver = 2 model_default = model_config['image_size'] if secondary_model_ver == 2: secondary_model = SecondaryDiffusionImageNet2() secondary_model.load_state_dict(torch.load(f'{model_path}/secondary_model_imagenet_2.pth', map_location='cpu')) secondary_model.eval().requires_grad_(False).to(device) clip_models = [] if ViTB32 is True: clip_models.append(clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device)) if ViTB16 is True: clip_models.append(clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device) ) if ViTL14 is True: clip_models.append(clip.load('ViT-L/14', jit=False)[0].eval().requires_grad_(False).to(device) ) if RN50 is True: clip_models.append(clip.load('RN50', jit=False)[0].eval().requires_grad_(False).to(device)) if RN50x4 is True: clip_models.append(clip.load('RN50x4', jit=False)[0].eval().requires_grad_(False).to(device)) if RN50x16 is True: clip_models.append(clip.load('RN50x16', jit=False)[0].eval().requires_grad_(False).to(device)) if RN50x64 is True: clip_models.append(clip.load('RN50x64', jit=False)[0].eval().requires_grad_(False).to(device)) if RN101 is True: clip_models.append(clip.load('RN101', jit=False)[0].eval().requires_grad_(False).to(device)) if SLIPB16: SLIPB16model = SLIP_VITB16(ssl_mlp_dim=4096, ssl_emb_dim=256) if not os.path.exists(f'{model_path}/slip_base_100ep.pt'): wget("https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt", model_path) sd = torch.load(f'{model_path}/slip_base_100ep.pt') real_sd = {} for k, v in sd['state_dict'].items(): real_sd['.'.join(k.split('.')[1:])] = v del sd SLIPB16model.load_state_dict(real_sd) SLIPB16model.requires_grad_(False).eval().to(device) clip_models.append(SLIPB16model) if SLIPL16: SLIPL16model = SLIP_VITL16(ssl_mlp_dim=4096, ssl_emb_dim=256) if not os.path.exists(f'{model_path}/slip_large_100ep.pt'): wget("https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt", model_path) sd = torch.load(f'{model_path}/slip_large_100ep.pt') real_sd = {} for k, v in sd['state_dict'].items(): real_sd['.'.join(k.split('.')[1:])] = v del sd SLIPL16model.load_state_dict(real_sd) SLIPL16model.requires_grad_(False).eval().to(device) clip_models.append(SLIPL16model) normalize = T.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) lpips_model = lpips.LPIPS(net='vgg').to(device) """# 3. Settings""" #@markdown ####**Basic Settings:** batch_name = 'new_House' #@param{type: 'string'} steps = 300#@param [25,50,100,150,250,500,1000]{type: 'raw', allow-input: true} width_height = [1280, 720]#@param{type: 'raw'} clip_guidance_scale = 5000 #@param{type: 'number'} tv_scale = 0#@param{type: 'number'} range_scale = 150#@param{type: 'number'} sat_scale = 0#@param{type: 'number'} cutn_batches = 4#@param{type: 'number'} skip_augs = False#@param{type: 'boolean'} #@markdown --- #@markdown ####**Init Settings:** init_image = "/content/drive/MyDrive/AI/Disco_Diffusion/init_images/xv_1_decoupe_noback.jpg" #@param{type: 'string'} init_scale = 1000 #@param{type: 'integer'} skip_steps = 50 #@param{type: 'integer'} #@markdown *Make sure you set skip_steps to ~50% of your steps if you want to use an init image.* #Get corrected sizes side_x = (width_height[0]//64)*64; side_y = (width_height[1]//64)*64; if side_x != width_height[0] or side_y != width_height[1]: print(f'Changing output size to {side_x}x{side_y}. Dimensions must by multiples of 64.') #Update Model Settings timestep_respacing = f'ddim{steps}' diffusion_steps = (1000//steps)*steps if steps < 1000 else steps model_config.update({ 'timestep_respacing': timestep_respacing, 'diffusion_steps': diffusion_steps, }) #Make folder for batch batchFolder = f'{outDirPath}/{batch_name}' createPath(batchFolder) """### Animation Settings""" #@markdown ####**Animation Mode:** animation_mode = 'None' #@param ['None', '2D', '3D', 'Video Input'] {type:'string'} #@markdown *For animation, you probably want to turn `cutn_batches` to 1 to make it quicker.* #@markdown --- #@markdown ####**Video Input Settings:** if is_colab: video_init_path = "/content/training.mp4" #@param {type: 'string'} else: video_init_path = "training.mp4" #@param {type: 'string'} extract_nth_frame = 2 #@param {type: 'number'} video_init_seed_continuity = True #@param {type: 'boolean'} if animation_mode == "Video Input": if is_colab: videoFramesFolder = f'/content/videoFrames' else: videoFramesFolder = f'videoFrames' createPath(videoFramesFolder) print(f"Exporting Video Frames (1 every {extract_nth_frame})...") try: for f in pathlib.Path(f'{videoFramesFolder}').glob('*.jpg'): f.unlink() except: print('') vf = f'"select=not(mod(n\,{extract_nth_frame}))"' subprocess.run(['ffmpeg', '-i', f'{video_init_path}', '-vf', f'{vf}', '-vsync', 'vfr', '-q:v', '2', '-loglevel', 'error', '-stats', f'{videoFramesFolder}/%04d.jpg'], stdout=subprocess.PIPE).stdout.decode('utf-8') #!ffmpeg -i {video_init_path} -vf {vf} -vsync vfr -q:v 2 -loglevel error -stats {videoFramesFolder}/%04d.jpg #@markdown --- #@markdown ####**2D Animation Settings:** #@markdown `zoom` is a multiplier of dimensions, 1 is no zoom. #@markdown All rotations are provided in degrees. key_frames = True #@param {type:"boolean"} max_frames = 10000#@param {type:"number"} if animation_mode == "Video Input": max_frames = len(glob(f'{videoFramesFolder}/*.jpg')) interp_spline = 'Linear' #Do not change, currently will not look good. param ['Linear','Quadratic','Cubic']{type:"string"} angle = "0:(0)"#@param {type:"string"} zoom = "0: (1), 10: (1.05)"#@param {type:"string"} translation_x = "0: (0)"#@param {type:"string"} translation_y = "0: (0)"#@param {type:"string"} translation_z = "0: (10.0)"#@param {type:"string"} rotation_3d_x = "0: (0)"#@param {type:"string"} rotation_3d_y = "0: (0)"#@param {type:"string"} rotation_3d_z = "0: (0)"#@param {type:"string"} midas_depth_model = "dpt_large"#@param {type:"string"} midas_weight = 0.3#@param {type:"number"} near_plane = 200#@param {type:"number"} far_plane = 10000#@param {type:"number"} fov = 40#@param {type:"number"} padding_mode = 'border'#@param {type:"string"} sampling_mode = 'bicubic'#@param {type:"string"} #======= TURBO MODE #@markdown --- #@markdown ####**Turbo Mode (3D anim only):** #@markdown (Starts after frame 10,) skips diffusion steps and just uses depth map to warp images for skipped frames. #@markdown Speeds up rendering by 2x-4x, and may improve image coherence between frames. frame_blend_mode smooths abrupt texture changes across 2 frames. #@markdown For different settings tuned for Turbo Mode, refer to the original Disco-Turbo Github: https://github.com/zippy731/disco-diffusion-turbo turbo_mode = False #@param {type:"boolean"} turbo_steps = "3" #@param ["2","3","4","5","6"] {type:"string"} turbo_preroll = 10 # frames #insist turbo be used only w 3d anim. if turbo_mode and animation_mode != '3D': print('=====') print('Turbo mode only available with 3D animations. Disabling Turbo.') print('=====') turbo_mode = False #@markdown --- #@markdown ####**Coherency Settings:** #@markdown `frame_scale` tries to guide the new frame to looking like the old one. A good default is 1500. frames_scale = 1500 #@param{type: 'integer'} #@markdown `frame_skip_steps` will blur the previous frame - higher values will flicker less but struggle to add enough new detail to zoom into. frames_skip_steps = '60%' #@param ['40%', '50%', '60%', '70%', '80%'] {type: 'string'} def parse_key_frames(string, prompt_parser=None): """Given a string representing frame numbers paired with parameter values at that frame, return a dictionary with the frame numbers as keys and the parameter values as the values. Parameters ---------- string: string Frame numbers paired with parameter values at that frame number, in the format 'framenumber1: (parametervalues1), framenumber2: (parametervalues2), ...' prompt_parser: function or None, optional If provided, prompt_parser will be applied to each string of parameter values. Returns ------- dict Frame numbers as keys, parameter values at that frame number as values Raises ------ RuntimeError If the input string does not match the expected format. Examples -------- >>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)") {10: 'Apple: 1| Orange: 0', 20: 'Apple: 0| Orange: 1| Peach: 1'} >>> parse_key_frames("10:(Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)", prompt_parser=lambda x: x.lower())) {10: 'apple: 1| orange: 0', 20: 'apple: 0| orange: 1| peach: 1'} """ import re pattern = r'((?P[0-9]+):[\s]*[\(](?P[\S\s]*?)[\)])' frames = dict() for match_object in re.finditer(pattern, string): frame = int(match_object.groupdict()['frame']) param = match_object.groupdict()['param'] if prompt_parser: frames[frame] = prompt_parser(param) else: frames[frame] = param if frames == {} and len(string) != 0: raise RuntimeError('Key Frame string not correctly formatted') return frames def get_inbetweens(key_frames, integer=False): """Given a dict with frame numbers as keys and a parameter value as values, return a pandas Series containing the value of the parameter at every frame from 0 to max_frames. Any values not provided in the input dict are calculated by linear interpolation between the values of the previous and next provided frames. If there is no previous provided frame, then the value is equal to the value of the next provided frame, or if there is no next provided frame, then the value is equal to the value of the previous provided frame. If no frames are provided, all frame values are NaN. Parameters ---------- key_frames: dict A dict with integer frame numbers as keys and numerical values of a particular parameter as values. integer: Bool, optional If True, the values of the output series are converted to integers. Otherwise, the values are floats. Returns ------- pd.Series A Series with length max_frames representing the parameter values for each frame. Examples -------- >>> max_frames = 5 >>> get_inbetweens({1: 5, 3: 6}) 0 5.0 1 5.0 2 5.5 3 6.0 4 6.0 dtype: float64 >>> get_inbetweens({1: 5, 3: 6}, integer=True) 0 5 1 5 2 5 3 6 4 6 dtype: int64 """ key_frame_series = pd.Series([np.nan for a in range(max_frames)]) for i, value in key_frames.items(): key_frame_series[i] = value key_frame_series = key_frame_series.astype(float) interp_method = interp_spline if interp_method == 'Cubic' and len(key_frames.items()) <=3: interp_method = 'Quadratic' if interp_method == 'Quadratic' and len(key_frames.items()) <= 2: interp_method = 'Linear' key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()] key_frame_series[max_frames-1] = key_frame_series[key_frame_series.last_valid_index()] # key_frame_series = key_frame_series.interpolate(method=intrp_method,order=1, limit_direction='both') key_frame_series = key_frame_series.interpolate(method=interp_method.lower(),limit_direction='both') if integer: return key_frame_series.astype(int) return key_frame_series def split_prompts(prompts): prompt_series = pd.Series([np.nan for a in range(max_frames)]) for i, prompt in prompts.items(): prompt_series[i] = prompt # prompt_series = prompt_series.astype(str) prompt_series = prompt_series.ffill().bfill() return prompt_series if key_frames: try: angle_series = get_inbetweens(parse_key_frames(angle)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `angle` correctly for key frames.\n" "Attempting to interpret `angle` as " f'"0: ({angle})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) angle = f"0: ({angle})" angle_series = get_inbetweens(parse_key_frames(angle)) try: zoom_series = get_inbetweens(parse_key_frames(zoom)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `zoom` correctly for key frames.\n" "Attempting to interpret `zoom` as " f'"0: ({zoom})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) zoom = f"0: ({zoom})" zoom_series = get_inbetweens(parse_key_frames(zoom)) try: translation_x_series = get_inbetweens(parse_key_frames(translation_x)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `translation_x` correctly for key frames.\n" "Attempting to interpret `translation_x` as " f'"0: ({translation_x})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) translation_x = f"0: ({translation_x})" translation_x_series = get_inbetweens(parse_key_frames(translation_x)) try: translation_y_series = get_inbetweens(parse_key_frames(translation_y)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `translation_y` correctly for key frames.\n" "Attempting to interpret `translation_y` as " f'"0: ({translation_y})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) translation_y = f"0: ({translation_y})" translation_y_series = get_inbetweens(parse_key_frames(translation_y)) try: translation_z_series = get_inbetweens(parse_key_frames(translation_z)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `translation_z` correctly for key frames.\n" "Attempting to interpret `translation_z` as " f'"0: ({translation_z})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) translation_z = f"0: ({translation_z})" translation_z_series = get_inbetweens(parse_key_frames(translation_z)) try: rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `rotation_3d_x` correctly for key frames.\n" "Attempting to interpret `rotation_3d_x` as " f'"0: ({rotation_3d_x})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) rotation_3d_x = f"0: ({rotation_3d_x})" rotation_3d_x_series = get_inbetweens(parse_key_frames(rotation_3d_x)) try: rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `rotation_3d_y` correctly for key frames.\n" "Attempting to interpret `rotation_3d_y` as " f'"0: ({rotation_3d_y})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) rotation_3d_y = f"0: ({rotation_3d_y})" rotation_3d_y_series = get_inbetweens(parse_key_frames(rotation_3d_y)) try: rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z)) except RuntimeError as e: print( "WARNING: You have selected to use key frames, but you have not " "formatted `rotation_3d_z` correctly for key frames.\n" "Attempting to interpret `rotation_3d_z` as " f'"0: ({rotation_3d_z})"\n' "Please read the instructions to find out how to use key frames " "correctly.\n" ) rotation_3d_z = f"0: ({rotation_3d_z})" rotation_3d_z_series = get_inbetweens(parse_key_frames(rotation_3d_z)) else: angle = float(angle) zoom = float(zoom) translation_x = float(translation_x) translation_y = float(translation_y) translation_z = float(translation_z) rotation_3d_x = float(rotation_3d_x) rotation_3d_y = float(rotation_3d_y) rotation_3d_z = float(rotation_3d_z) """### Extra Settings Partial Saves, Diffusion Sharpening, Advanced Settings, Cutn Scheduling """ #@markdown ####**Saving:** intermediate_saves = 4#@param{type: 'raw'} intermediates_in_subfolder = True #@param{type: 'boolean'} #@markdown Intermediate steps will save a copy at your specified intervals. You can either format it as a single integer or a list of specific steps #@markdown A value of `2` will save a copy at 33% and 66%. 0 will save none. #@markdown A value of `[5, 9, 34, 45]` will save at steps 5, 9, 34, and 45. (Make sure to include the brackets) if type(intermediate_saves) is not list: if intermediate_saves: steps_per_checkpoint = math.floor((steps - skip_steps - 1) // (intermediate_saves+1)) steps_per_checkpoint = steps_per_checkpoint if steps_per_checkpoint > 0 else 1 print(f'Will save every {steps_per_checkpoint} steps') else: steps_per_checkpoint = steps+10 else: steps_per_checkpoint = None if intermediate_saves and intermediates_in_subfolder is True: partialFolder = f'{batchFolder}/partials' createPath(partialFolder) #@markdown --- #@markdown ####**SuperRes Sharpening:** #@markdown *Sharpen each image using latent-diffusion. Does not run in animation mode. `keep_unsharp` will save both versions.* sharpen_preset = 'Fast' #@param ['Off', 'Faster', 'Fast', 'Slow', 'Very Slow'] keep_unsharp = True #@param{type: 'boolean'} if sharpen_preset != 'Off' and keep_unsharp is True: unsharpenFolder = f'{batchFolder}/unsharpened' createPath(unsharpenFolder) #@markdown --- #@markdown ####**Advanced Settings:** #@markdown *There are a few extra advanced settings available if you double click this cell.* #@markdown *Perlin init will replace your init, so uncheck if using one.* perlin_init = False #@param{type: 'boolean'} perlin_mode = 'mixed' #@param ['mixed', 'color', 'gray'] set_seed = 'random_seed' #@param{type: 'string'} eta = 0.8#@param{type: 'number'} clamp_grad = True #@param{type: 'boolean'} clamp_max = 0.05 #@param{type: 'number'} ### EXTRA ADVANCED SETTINGS: randomize_class = True clip_denoised = False fuzzy_prompt = False rand_mag = 0.05 #@markdown --- #@markdown ####**Cutn Scheduling:** #@markdown Format: `[40]*400+[20]*600` = 40 cuts for the first 400 /1000 steps, then 20 for the last 600/1000 #@markdown cut_overview and cut_innercut are cumulative for total cutn on any given step. Overview cuts see the entire image and are good for early structure, innercuts are your standard cutn. cut_overview = "[12]*400+[4]*600" #@param {type: 'string'} cut_innercut ="[4]*400+[12]*600"#@param {type: 'string'} cut_ic_pow = 1#@param {type: 'number'} cut_icgray_p = "[0.2]*400+[0]*600"#@param {type: 'string'} """### Prompts `animation_mode: None` will only use the first set. `animation_mode: 2D / Video` will run through them per the set frames and hold on the last one. """ text_prompts = { 0: [ "megastructure in the cloud, blame!, contemporary house in the mist, artstation", ] } image_prompts = { # 0:['ImagePromptsWorkButArentVeryGood.png:2',], } """# 4. Diffuse!""" #@title Do the Run! #@markdown `n_batches` ignored with animation modes. display_rate = 50#@param{type: 'number'} n_batches = 50#@param{type: 'number'} #Update Model Settings timestep_respacing = f'ddim{steps}' diffusion_steps = (1000//steps)*steps if steps < 1000 else steps model_config.update({ 'timestep_respacing': timestep_respacing, 'diffusion_steps': diffusion_steps, }) batch_size = 1 def move_files(start_num, end_num, old_folder, new_folder): for i in range(start_num, end_num): old_file = old_folder + f'/{batch_name}({batchNum})_{i:04}.png' new_file = new_folder + f'/{batch_name}({batchNum})_{i:04}.png' os.rename(old_file, new_file) #@markdown --- resume_run = False #@param{type: 'boolean'} run_to_resume = 'latest' #@param{type: 'string'} resume_from_frame = 'latest' #@param{type: 'string'} retain_overwritten_frames = False #@param{type: 'boolean'} if retain_overwritten_frames is True: retainFolder = f'{batchFolder}/retained' createPath(retainFolder) skip_step_ratio = int(frames_skip_steps.rstrip("%")) / 100 calc_frames_skip_steps = math.floor(steps * skip_step_ratio) if steps <= calc_frames_skip_steps: sys.exit("ERROR: You can't skip more steps than your total steps") if resume_run: if run_to_resume == 'latest': try: batchNum except: batchNum = len(glob(f"{batchFolder}/{batch_name}(*)_settings.txt"))-1 else: batchNum = int(run_to_resume) if resume_from_frame == 'latest': start_frame = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png")) if animation_mode != '3D' and turbo_mode == True and start_frame > turbo_preroll and start_frame % int(turbo_steps) != 0: start_frame = start_frame - (start_frame % int(turbo_steps)) else: start_frame = int(resume_from_frame)+1 if animation_mode != '3D' and turbo_mode == True and start_frame > turbo_preroll and start_frame % int(turbo_steps) != 0: start_frame = start_frame - (start_frame % int(turbo_steps)) if retain_overwritten_frames is True: existing_frames = len(glob(batchFolder+f"/{batch_name}({batchNum})_*.png")) frames_to_save = existing_frames - start_frame print(f'Moving {frames_to_save} frames to the Retained folder') move_files(start_frame, existing_frames, batchFolder, retainFolder) else: start_frame = 0 batchNum = len(glob(batchFolder+"/*.txt")) while os.path.isfile(f"{batchFolder}/{batch_name}({batchNum})_settings.txt") is True or os.path.isfile(f"{batchFolder}/{batch_name}-{batchNum}_settings.txt") is True: batchNum += 1 print(f'Starting Run: {batch_name}({batchNum}) at frame {start_frame}') if set_seed == 'random_seed': random.seed() seed = random.randint(0, 2**32) # print(f'Using seed: {seed}') else: seed = int(set_seed) args = { 'batchNum': batchNum, 'prompts_series':split_prompts(text_prompts) if text_prompts else None, 'image_prompts_series':split_prompts(image_prompts) if image_prompts else None, 'seed': seed, 'display_rate':display_rate, 'n_batches':n_batches if animation_mode == 'None' else 1, 'batch_size':batch_size, 'batch_name': batch_name, 'steps': steps, 'diffusion_sampling_mode': diffusion_sampling_mode, 'width_height': width_height, 'clip_guidance_scale': clip_guidance_scale, 'tv_scale': tv_scale, 'range_scale': range_scale, 'sat_scale': sat_scale, 'cutn_batches': cutn_batches, 'init_image': init_image, 'init_scale': init_scale, 'skip_steps': skip_steps, 'sharpen_preset': sharpen_preset, 'keep_unsharp': keep_unsharp, 'side_x': side_x, 'side_y': side_y, 'timestep_respacing': timestep_respacing, 'diffusion_steps': diffusion_steps, 'animation_mode': animation_mode, 'video_init_path': video_init_path, 'extract_nth_frame': extract_nth_frame, 'video_init_seed_continuity': video_init_seed_continuity, 'key_frames': key_frames, 'max_frames': max_frames if animation_mode != "None" else 1, 'interp_spline': interp_spline, 'start_frame': start_frame, 'angle': angle, 'zoom': zoom, 'translation_x': translation_x, 'translation_y': translation_y, 'translation_z': translation_z, 'rotation_3d_x': rotation_3d_x, 'rotation_3d_y': rotation_3d_y, 'rotation_3d_z': rotation_3d_z, 'midas_depth_model': midas_depth_model, 'midas_weight': midas_weight, 'near_plane': near_plane, 'far_plane': far_plane, 'fov': fov, 'padding_mode': padding_mode, 'sampling_mode': sampling_mode, 'angle_series':angle_series, 'zoom_series':zoom_series, 'translation_x_series':translation_x_series, 'translation_y_series':translation_y_series, 'translation_z_series':translation_z_series, 'rotation_3d_x_series':rotation_3d_x_series, 'rotation_3d_y_series':rotation_3d_y_series, 'rotation_3d_z_series':rotation_3d_z_series, 'frames_scale': frames_scale, 'calc_frames_skip_steps': calc_frames_skip_steps, 'skip_step_ratio': skip_step_ratio, 'calc_frames_skip_steps': calc_frames_skip_steps, 'text_prompts': text_prompts, 'image_prompts': image_prompts, 'cut_overview': eval(cut_overview), 'cut_innercut': eval(cut_innercut), 'cut_ic_pow': cut_ic_pow, 'cut_icgray_p': eval(cut_icgray_p), 'intermediate_saves': intermediate_saves, 'intermediates_in_subfolder': intermediates_in_subfolder, 'steps_per_checkpoint': steps_per_checkpoint, 'perlin_init': perlin_init, 'perlin_mode': perlin_mode, 'set_seed': set_seed, 'eta': eta, 'clamp_grad': clamp_grad, 'clamp_max': clamp_max, 'skip_augs': skip_augs, 'randomize_class': randomize_class, 'clip_denoised': clip_denoised, 'fuzzy_prompt': fuzzy_prompt, 'rand_mag': rand_mag, } args = SimpleNamespace(**args) print('Prepping model...') model, diffusion = create_model_and_diffusion(**model_config) model.load_state_dict(torch.load(f'{model_path}/{diffusion_model}.pt', map_location='cpu')) model.requires_grad_(False).eval().to(device) for name, param in model.named_parameters(): if 'qkv' in name or 'norm' in name or 'proj' in name: param.requires_grad_() if model_config['use_fp16']: model.convert_to_fp16() gc.collect() torch.cuda.empty_cache() try: do_run() except KeyboardInterrupt: pass finally: print('Seed used:', seed) gc.collect() torch.cuda.empty_cache() """# 5. Create the video""" # @title ### **Create video** #@markdown Video file will save in the same folder as your images. skip_video_for_run_all = True #@param {type: 'boolean'} if skip_video_for_run_all == True: print('Skipping video creation, uncheck skip_video_for_run_all if you want to run it') else: # import subprocess in case this cell is run without the above cells import subprocess from base64 import b64encode latest_run = batchNum folder = batch_name #@param run = latest_run #@param final_frame = 'final_frame' init_frame = 1#@param {type:"number"} This is the frame where the video will start last_frame = final_frame#@param {type:"number"} You can change i to the number of the last frame you want to generate. It will raise an error if that number of frames does not exist. fps = 12#@param {type:"number"} # view_video_in_cell = True #@param {type: 'boolean'} frames = [] # tqdm.write('Generating video...') if last_frame == 'final_frame': last_frame = len(glob(batchFolder+f"/{folder}({run})_*.png")) print(f'Total frames: {last_frame}') image_path = f"{outDirPath}/{folder}/{folder}({run})_%04d.png" filepath = f"{outDirPath}/{folder}/{folder}({run}).mp4" cmd = [ 'ffmpeg', '-y', '-vcodec', 'png', '-r', str(fps), '-start_number', str(init_frame), '-i', image_path, '-frames:v', str(last_frame+1), '-c:v', 'libx264', '-vf', f'fps={fps}', '-pix_fmt', 'yuv420p', '-crf', '17', '-preset', 'veryslow', filepath ] process = subprocess.Popen(cmd, cwd=f'{batchFolder}', stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() if process.returncode != 0: print(stderr) raise RuntimeError(stderr) else: print("The video is ready and saved to the images folder") # if view_video_in_cell: # mp4 = open(filepath,'rb').read() # data_url = "data:video/mp4;base64," + b64encode(mp4).decode() # display.HTML(f'')